

Abstract

The study of kinematics is essential to robotics. A robot,

to perform most applications, needs to process positional

data and transform data from one frame of reference to an-

other. Robots have sensors, links, and actuators, each with

its own frame of reference; so transformations between ref-

erence frames can be quite tedious. Traditionally, kinemat-

ics for robots is introduced to students using MATLAB and

the Robotic Toolbox. In this study, the authors examined the

introduction of kinematics for robotics with the features and

tools available in the open source Robot Operating System

(ROS). ROS implements tools for kinematics transforms (tf)

as a key part of the ROS core libraries.

ROS defines robots with the unified robot description

format (URDF) standard based upon extensible markup

language (XML). URDF is, in many respects, similar to the

Denavit-Hartenberg (D-H) convention but with significant

additional enhancements. Students in electronic engineering

technology (EET) were introduced to kinematics and ROS

so they would have greater insight into engineering projects

involving robotics. It was discovered that using ROS in ro-

botics projects not only makes the projects more interesting

to students, but also gives students an authentic experience

with distributive systems and odometry sensors. Kinematics

for robots uses linear algebra, matrices, natural logarithms

(Euler’s equation), imaginary numbers and trigonometry.

The areas of mathematics were used to introduce kinematics

for robotics to EET students to understand electricity, elec-

tric fields, and circuit theory. Emphasis was placed on ma-

trix operations, operations involving trigonometry functions

and imaginary numbers. The authors summarize here the

results of this approach.

Introduction

The study of kinematics is a key tool in both industrial

and mobile robotics. Robots have sensors, links, and actua-

tors, each with its own frame of reference; so transfor-

mations between reference frames can be quite tedious.

Software makes transforms easy to perform and automatic,

but students need to understand kinematics to use the soft-

ware [1]. Labs were designed for EET students to give them

basic kinematic concepts, while gaining experience with

ROS. In this paper, kinematic theory is presented to give the

reader a good idea of what kinematic concepts were present-

ed in the lab. Also in the labs were detailed descriptions of

how ROS can be used to learn kinematics.

The topics covered for the kinematic labs are depicted in

Figure 1. Euler angles tend to be intuitive to describe robot

motion, but have issues when angles approach 90 . Quater-

nions are an alternative to Euler angles but are not intuitive

to use. Quaternions were treated as black boxes and Euler

angles were used for inputs to the robot model to have the

best of both descriptions of rotation [2]. Joints used in labs

were revolute or prismatic. Other joint types were approxi-

mated in ROS using combinations of revolute and prismatic

joints. The joint types were limited to keep the introduction

to kinematics simple.

Figure 1. Robotic Kinematic Topics for Labs

Joints in robots are usually combined in a series to form

chains. The robot modeling software allowed for chains to

be combined into tree-like structures. A good example of a

kinematic tree would be a robot with two or more arms.

Forward kinematics determines the position of the robot,

given the joint rotations or distance for prismatic sliding

joints. Inverse kinematics is more difficult than forward

kinematics since it is needed to find one or more ways to

move a robot to a given point in space. Where there is usu-

ally a solution in forward kinematic problems, there may be

multiple or no solutions in an inverse kinematic problem.

——–————

Asad Yousuf, Savannah State University; William Lehman, Bill's Robotic Solutions;

Mir Hayder, Savannah State University; Mohamad Mustafa, Savannah State University

INTRODUCING KINEMATICS INTO ROBOTIC

OPERATING SYSTEMS

——–————

INTRODUCING KINEMATICS INTO ROBOTIC OPERATING SYSTEMS 39

——–————

——–————

 40 INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH AND INNOVATION | V7, N2, FALL/WINTER 2015

Robotic Operating System

Kinematics was explored using software packages. ROS

has a number of software packages that deal with kinemat-

ics (see Figure 2). To demonstrate the kinematic concepts

from Figure 1, more than one software package was used

from Figure 2. RVIZ is a robot simulator that can display a

URDF robot model in 3D along with data from other sen-

sors such as cameras. All the labs take advantage of RVIZ

to demonstrate the six kinematic concepts in Figure 1.

Figure 2. Software Packages in ROS for Labs

The tf software package provides a library of kinematic

routines that provide all of the mathematical functions need-

ed to transform kinematic data from one frame of reference

to another in robot manipulators. Transforms in ROS are

made on positional data in both space and time. There are

good tutorials in ROS on how data are transformed in the

temporal domain. In this study, examples and labs were

based on positional data that were constant so that extrapo-

lation in time could be ignored. Time was important but

could be ignored to “keep it simple” for students [3]. URDF

is a XML modeling language capable of modeling most

robots. Python is a programming language with interfaces to

the ROS system. Software packages in ROS are written

mainly in Python, Lisp, and C++. Python interpreter was

used much like a calculator. RVIZ GUI will display robot

information and the results will be confirmed using calcula-

tions made in Python. MoveIt is a fascinating software

package for controlling robot arms and manipulators. The

labs developed to introduce students to robot kinematics are

listed in Table 1.

Lab 1 dealt with analyzing views of robots from different

frames of reference and converting quaternions to and from

axis angle representation. In Lab 2, the students converted

quaternions to and from Euler angles using the Python pro-

gramming language. In Lab 3, students learned to read and

write URDF files with the Linux Ubuntu screen editor gedit.

The extension to Lab 3 exposed students to converting D-H

tables to URDF files. Finally, students confirmed whether

the URDF model was correct with the RVIZ robot simula-

tor. Lab 4 offered the opportunity to run a number of in-

verse algorithms from OMPL using both the Willow Garage

PR2 and 6R robot [4]. Of all the labs in Table 1, Labs 1–3

dealt with concepts in forward kinematics and Lab 4 in in-

verse kinematics.

Table 1. Titles of Labs

Lab 1: RVIZ and PYTHON with a Simple

Robot Manipulator Model

In this lab, students learned how to use the RVIZ robot

simulator and convert quaternions to/from an axis angle

representation. Python programming language was used to

make the manual calculations and confirm whether ROS

was working as expected (see Figure 3). Python is an inter-

preted language and supported by the ROS.

Figure 3. Setup for Lab 1

There were four sections in this lab:

1. Setup and RVIZ features

2. Converting from quaternion to axis angle representa-

tion

3. Frames of reference

4. Robot arm movement sequence

Lab Title

1
RVIZ and PYTHON with simple robot manipulator

model

2 RVIZ, TF, and PYTHON with aircraft robot model

2A Finding position and interpolation with quaternions

3 URDF and hydra robot models

3A Converting D-H tables to URDF models

4 MoveIt and inverse kinematics

4A Evaluating student designed robot

——–————

Setup guided the students through the startup of RVIZ,

Robot State Publisher, and terminals. Features of the RVIZ

display were explored. Quaternions to axis angle representa-

tion were converted to get useful information from the qua-

ternion. The frames of reference in the chain of links was

also changed to take different measurements. Finally, the

sequences of moving arm joints were explored to set the

robot to different positions in 3D space. Figure 4 represents

the RVIZ robot simulator showing the robot arm. The posi-

tion is shown on the RVIZ screen along with relative posi-

tion using quaternions for the orientation. The robot state

publisher screen is also displayed with sliders to control the

robot arm [5]. Figure 5 represents the RVIS robot simulator

showing the robot arm visuals turned off to reveal the axis

systems of each frame.

Figure 4. RVIZ Simulator and State Publisher Window

Figure 5. Joint Conventions and 3D Axis

Quaternions

Axis angle is somewhat intuitive and similar to quaterni-

ons but in 3D. Axis angle can be converted to and from Eu-

ler angles and to and from quaternions. Equations (1)-(11)

convert the axis angle vector to a quaternion [6]:

(1)

(2)

(3)

The quaternion was normalized, so Equation (4) was ap-

plied.

 (4)

Equations (5)-(8) convert a quaternion to an axis angle

vector.

 (5)

 (6)

 (7)

 (8)

The direction cosine angles can be found using Equations

(9)-(11):

(9)

(10)

(11)

Example:

Given the quaternion

q1 = 0.293802

q2 = -0.0957684

q3 = -0.294745

q4 = 0.904231

The quaternion is normalized

1 = q12 + q22 + q32 + q42 = 0.999999518

a = 0.427043673

α = 2cos-1(q4) = 0.8824416 = 50.56

x = 0.6829905

y = -0.2242590

z = -0.6901987

1 sin cos
2

xq

2 sin cos
2

yq

3 sin cos
2

zq

2 2 2 21 2 3 4 1q q q q

 12cos 4q

2

1

1 4

q
x

q

2

2

1 4

q
y

q

2

3

1 4

q
z

q

1cosx x

1cosy y

1cosz z

——–————

INTRODUCING KINEMATICS INTO ROBOTIC OPERATING SYSTEMS 41

——–————

——–————

 42 INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH AND INNOVATION | V7, N2, FALL/WINTER 2015

It should be noted that x2 + y2 + z2 = 1, and is thus normal-

ized.

 = 46.5

 = 77.4

 = 133.6

Lab 2: RVIZ, TF, and PYTHON with an

Aircraft Robot Model

In this lab, students learned how to use the RVIZ robot

simulator, Python programming interpreter, and ROS tf

library to study Euler angles. The robot state publisher al-

lows for the robot model in RVIZ to be controlled with slid-

ers (see Figure 6). There were three sections in this lab:

1. Euler angles and gimbal lock

2. Converting quaternions to and from Euler angles

3. Frames of reference and the tf transform

Figure 6. Setup for Lab 2

Euler angles are expressed in terms of roll, pitch, and yaw

to specify the orientation of an aircraft. In ROS, roll is a

rotation about the x axis, pitch is a rotation about the y axis,

and yaw is a rotation about the z axis (see Figure 7). All

rotations in ROS follow the right-hand rule for direction of

rotation [7].

Table 2 shows the combinations of possible Euler angles.

It should be noted that Tait-Bray angles are also referred to

as Euler angles. The tf library provides two ways to convert

Euler angles to quaternions with any of the combinations in

Table 2. The tf library can also provide a convenient con-

version from quaternions to Euler angles [8]. Euler angles

are intuitive to use except that there are issues with Gimbal

Lock. Quaternions avoid the issues of Euler angles, but are

difficult to visualize. This dilemma can be solved by con-

verting to and from Euler angles [9]. Using multiple frames

of reference for a robot makes it easy to calculate angles and

distances from one point in the environment to another. The

tf library is used in ROS to perform this task.

(a) Roll

(b) Pitch

(c) Yaw

Figure 7. Roll, Pitch, and Yaw of an Aircraft

Table 2. Euler Angle Combinations

1cosx x

1cosy y

1cosz z

Proper Euler Angles Tait-Bray Angles

RYR RYP

RPR RPY

PRP PRY

PYP PYR

YPY YPR

YRY YRP

——–————

Lab 2A: Finding Position and Interpolation

with Quaternions

In this extension to Lab 2, position was determined from

Equation (12) and interpolation between two quaternions

was found with the SLERP algorithm of Equation (12):

Q P1 Q* = P2 (12)

where, Q is the quaternion; Q* is the conjugate of the qua-

ternion, Q; Q and Q* are both normalized quaternions; and,

P1 is a vector in the form [x, y, z, 0] and is not normalized.

The first half of the calculation is a quaternion multiplied

between Q and P1. The results of the multiplication are a

quaternion, which in turn is multiplied by the Q* quaterni-

on. Position 2 is also a vector in the form [x, y, z, 0]. Inter-

polation between two quaternions was found with the

SLERP algorithm, which was implemented in Python [10].

Students determined the change in position between succes-

sive frames using Equation (12).

Lab 3: URDF and Hydra Robot Models

In this lab, students learned how the Unified Robot De-

scription Format (URDF) describes robots and could use it

to design their own robot. The Ubuntu Linux editor, gedit,

was used to modify and create URDF text files. RVIZ, a

robot simulator, and the robot state publisher in ROS, were

used to display and control the robot models [11]. There

were five sections in this lab:

1. URDF format and simple robot model

2. Ubuntu Linux graphical screen editor gedit

3. Hydra robot example

4. Hydra robot URDF models

5. Design a robot URDF model

URDF can be used to model a robot with links (members)

connected by joints in a chain or tree. Most industrial robots

can be modeled by chains of joints offset by links. Multi-

arm robots can be modeled with a tree data structure of

joints connected by links to a base link. The transmission

element will not be covered in this lab at this point, since all

the robots needed are created by chains or trees. Other ele-

ments of URDF such as sensors are also not used. There are

two main types of URDF XML elements that were needed

to create robot links and joints. Link elements (or blocks)

can contain elements for inertial properties, visual proper-

ties, and collision properties. Joint elements can contain

elements for origin, parent link name, child link name, axis

of rotation/translation, calibration, dynamics, limit, mimic

another joint, and safety controller information. The kine-

matic chain or tree of Figure 8 can be represented by a

graph of links connected though joints between each link

and other links.

Figure 8. Kinematic Tree

Link 1A is moved by the joint between the base link and

Link 1A. Link 1A is connected to a joint between Link 1A

and Link 2A that moves Link 2A. Link 1A is also connected

to a joint between Link 1A and Link 3A, which moves Link

3A. Each Link is moved by a single joint but may be con-

nected to a number of joints that move other links. In URDF

terminology, multiple joints can be connected to one link,

but the link can only be a child in one of the joints connect-

ed to it and must be a parent to all the other joints connected

to it. The base link is the first link in the tree and is special.

The origin of the axis system to world coordinates x, y, and

z was determined from the odometry frame (/odom) and

map. In the next example, the robot arm axis origin was

located at world coordinate 0, 0, 0. It should be noted the

students received a graph of the kinematic tree or chain with

the urdf_graphviz command entered into the terminal [12].

Link elements must have the “name” attributes for the

link. The inertial and collision properties for the link are not

included, except where it will be connected to a prismatic

type joint. The visual information can be provided by speci-

fying a rectangle, sphere, or cylinder shape for the link or a

mesh. Although the mesh produced by a computer aided

design (CAD) program can be very pleasing to the eye, it

was kept simple with a rectangle or cylinder shape. As a

convention in the design of the robots for the labs, all of the

link and joint elements were grouped together for readabil-

ity of the URDF file [13], see Figure 9. The joint element

had a name and an attribute for the type of joint. Only a

revolute, continuous, or prismatic type was selected for the

joint. The ROS continuous joint type in actuality is a revo-

lute. In URDF, a continuous joint is a revolute joint with the

angle of rotation of 360, where the revolute joint limits of

rotation must be specified. The joint attaches a parent link to

a child link. The child link can be a parent link to one or

more other links in a chain or tree. The child link, however,

can never be connected through a series of joints and links

back to its parent link making a loop [14].

——–————

INTRODUCING KINEMATICS INTO ROBOTIC OPERATING SYSTEMS 43

——–————

——–————

 44 INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH AND INNOVATION | V7, N2, FALL/WINTER 2015

Figure 9. Types of URDF XML Blocks

An example link element can be found in Figure 10. The

link could have been named anything to identify it, but it

was named “link2” as it was the second link in the chain.

The inertial and collision information was skipped, not be-

cause it was not useful but rather to keep the example sim-

ple. The visual element contained the geometry element,

which set the type of display using the geometry element.

The box element was inside the geometry element. The box

element set the x, y, z sizes of the rectangle. The visual also

contained the material element, which set the color of the

rectangle link. This link was set to an arbitrary color to dis-

tinguish it from other links in the RVIS simulator display.

Figure 10. URDF XML Element Link Block

The visual also has the origin element inside it. The origin

rotates the linkage visual display using roll, pitch, and yaw

angles. Roll is about the x axis, pitch is rotation about the y

axis, and yaw is rotation about the z axis. In the above ex-

ample, the rectangle was rotated 90 from the long side on

the x axis to now point along the z axis. The link was offset

0.5 meters above the origin of the base link. The robot was

actually buried in the floor in a hole with 0.5 meters deep.

Syntax of the XML elements had the form “<label parame-

ters>” followed by other elements and a “/>” or “</

label>” [15].

Next, a joint XML element was examined (see Figure

11). The joint must have some name, which should make

sense to identify where on the robot it resides. In this exam-

ple, it was labeled as “link1_link2”, since the link named

link1 was connected to the link named link2. The joint was

a revolute type with no limits on rotation angle, so a contin-

uous type was chosen. The parent link was link1 and the

child link was link2.

Figure 11. URDF XML Joint Element Example

The axis element specified the axis that the joint would

revolve around, which in this case was x. The origin xyz

attribute was an offset of the joint from the parent joint

origin to the child’s joint origin. The origin rpy parameter

was a roll, pitch, and yaw rotation on the child’s joint frame

of reference. The robot URDF examples with prismatic

joints were slightly more complex since prismatic joints

require limit and safety parameters not required for continu-

ous joint types. The following command in the terminal

window can be used in ROS to check the syntax of the

URDF file.

 rosrun urdfdom check_urdf filename.urdf

Lab 3A: Converting a D-H Table to a

URDF Model

Denavit-Hartenberg (D-H) conventions ease the process

of calculating the position and orientation of frames in a

kinematic chain [16]. As noted earlier, URDF can be used

to model robots that are kinematic trees. URDF does not

require axis systems for frames to only rotate about the z

axis. URDF actually uses an arbitrary axis for revolute or

prismatic joints. However, the parameters of the URDF

joint variables can be shown in a table analogous to D-H

parameters. To demonstrate, the axis system was used in

Figure 12 in order to make the D-H table for the 3R robot

similar to the 3R robot introduced earlier. The θ variable

represents rotation about the z axis of the joint. The d pa-

rameter is the distance along the z axis to the next joint. The

d parameter is also a variable in the case of prismatic joints.

The “a” parameter is the distance of each common normal

or the offset between joints. Finally, the parameter is the

angle between the current joint, i, and the next joint i+1.

——–————

The parameters in the D-H table can be translated to param-

eters in the URDF joint element [17]. Figure 12 has the y

axis going into the page for Joint 1 and the z axis coming

out of the page for Joints 2 and 3. The parameters of the

URDF joint elements can be enumerated in a table similar

in concept to the D-H table (see Table 3). For a simple kine-

matic chain, there would be a single corresponding table to

model the joints in the robot. For a kinematic tree, multiple

joint element parameter tables can be used to represent each

kinematic chain in the tree. The di parameters will always be

placed in the corresponding Joint + 1 z axis offset between

Joint i and Joint i+1. The αi parameter is the offset between

Joint i and Joint i+1 along the x axis of Joint I and joint i+1.

The robot has to be placed in world coordinates in ROS

for a convenient orientation and to simplify calculations.

The 3R robot is placed at the origin of the world axis system

and aligned with that axis system. This means that instead

of rotating Joint 2 by 90 Joint 2 will be rotated so that the

z axis comes out of the page. Joints 3 and 4 will also be

rotated since Joint 2 is attached to Joint 3, which is attached

to Joint 4. Joint 4 is a fixed type joint and does not move.

Joint 4 is included to show the a3 parameter in the D-H ta-

ble. Dummy URDF link elements are set up with simple

names such as Link_1, Link_2, etc. No information is need-

ed in the URDF link element since visual elements of the

robot model are not being displayed in the lab. A base link

(not included in D-H table) is needed to attach the robot

model to the world coordinates. The parameters from the

table to the URDF joint element are also straightforward

(see Table 4). The x, y, z parameters correspond to the

origin xyz parameter in the URDF joint element. The roll,

pitch, and yaw parameters corresponds to the origin rpy

parameter in the URDF joint element. Finally, the axis pa-

rameters define a unit vector pointing along the z axis. Since

this is a revolute joint, the joint will rotate around the z axis.

After students create the URDF joint element parameter,

given the D-H table they perform, they convert it to URDF

and display the results in RVIZ to confirm that it matches

the axis system orientation of Figure 12. The a3 parameter

is between Joints 3 and 4. In Figure 13, the red axis is x, the

green axis is y, and the blue axis is z.

Figure 12. Axis 3R Robot

Table 3. D-H Parameters for 3R Robot

Figure 13. D-H 3R Robot Displayed in RVIZ

Lab 4: MoveIt and Inverse Kinematics

There were two sections in this lab:

1. Setup MoveIt

2. Students record benchmark information for each con-

figuration including planning time [18-20]

3. Smoothness of trajectory is noted

Link θi di ái ái

1 θ1 d1 0 90

2 θ2 0 á2 0

3 θ3 0 á3 0

Joint

Type

Joint Link

Joint+1

Link #
x y z

Joint+1

Roll

Joint+1

Pitch

Joint+1

Yaw

Joint+1

Axis x

Joint+1

Axis y

Joint+1

Axis z

1 R Base 1 0 0 d1 0 0 0 0 0 1

2 R 1 2 α2 0 0 900 0 0 0 0 1

3 R 2 3 α3 0 0 0 0 0 0 0 1

4 Fixed 3 4 0 0 0 0 0 0 - - -

Table 4. URDF Joint Elements Parameters

——–————

INTRODUCING KINEMATICS INTO ROBOTIC OPERATING SYSTEMS 45

——–————

——–————

 46 INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH AND INNOVATION | V7, N2, FALL/WINTER 2015

In this lab, the advantage of existing demonstration soft-

ware that uses the PR2 and 6R robot was taken. Students set

the robots to different start and end states for the PR2 and

6R robots. Students then watched the robot perform each

motion using the planning algorithm from the OMPL library

and recorded the time it took to calculate a solution. There

is an excellent tutorial that walks the students through the

setup and use of the demo software [21]. In the lab, students

selected from among the following planners to perform the

path selected for the PR2 or 6R robot [22]:

1. Bi-directional kinematics planning by interior-

exterior cell exploration (BKPIECE)

2. Kinematics planning by interior-exterior cell explora-

tion (KPIECE)

3. Lazy bi-directional kinematics planning by interior-

exterior cell exploration (LBKPIECE)

4. Expansion space trees (EST)

5. Probabilistic roadmap method (PRM)

6. Transition-based rapidly-exploring random trees

Building upon the RVIZ plugin tutorial, the students were

presented with a problem requiring building a table for the

selected algorithm using different planning groups and other

planning parameters. The students then recorded the results

of the test in a table of planning parameters versus time and

evaluated the results. Objects were inserted into the scene to

demonstrate and test planning with obstacles [23]. The goal

of the lab was to give them some insight into the complexity

of inverse kinematics (see Figure 14).

Figure 14. Demo Software Screen with 6R Robot

Lab 4A: Evaluating the Student-designed

Robot

The students evaluated the robot that they designed in

Lab 3. They used MoveIt setup assistant to configure their

robot. The students set up pre-configured poses for their

robot and followed a procedure similar to Lab 4 to evaluate

the robot [24].

Conclusion

In this paper, the authors presented the major features of

the seven labs developed to introduce students to kinematics

using ROS. Labs were developed for students to use accel-

erometers and gyros to track real robots using ROS. The

introduction to robotic kinematics should provide the back-

ground to understanding kinematic aspects of these labs.

The robot toolbox provides a powerful system for introduc-

ing students to robotic kinematics [25]. Given the limited

classroom time available for kinematics, the study focused

on forward kinematics and ROS. Given more time in the

robotics course, the authors would have included both

MATLAB and ROS. MATLAB has recently developed a

robot toolbox that allows MATLAB to connect to ROS.

Although MATLAB can connect to a ROS system, there is

a definite value to introducing kinematic concepts in ROS to

lower the ROS learning curve and re-enforcing kinematic

concepts. The labs were tested with the Hydro and Indigo

versions of ROS, but future plans are to include Jade. Infor-

mation on how to obtain the free open source labs outlined

in this paper can be found at the website for Brazen Head

Automation [26].

References

[1] Tully, F. (2013). Technologies for Practical Robot

Applications (TePRA). Proceedings of 2013 IEEE

International Conference on Open-Source Software

workshop. ISSN 2325-0526, pages 1-6. doi 10.1109/

TePRA.2013.6556373.

[2] James, D. (2006). Representing Attitude: Euler An-

gles, Unit Quaternions, and Rotation Vectors. Matrix,

Citeseer.

[3] Robot Operating System (n.d.). Retrieved October

25, 2015, from www.wiki.ros.org/tf

[4] Open Motion Planning Library: A Primer. http://

ompl.kavrakilab.org

[5] Bruno, S., & Oussama, K. (2008). Handbook of Ro-

botics, Digital Design. Springer.

[6] Maths-Rotation Conversions (n.d.). Retrieved on

October 25, 2015, from www.euclideanspace.com /

maths/geometry/rotations/conversions/

[7] Coordinate Frames for Mobile Platforms (n.d.). Re-

trieved on October 25, 2015, from http://www.ros.

org/reps/rep-0105.html

[8] Standard Units Measure and Coordinate Conventions

(n.d.). Retrieved on October 25, 2015, from http://

www.ros.org/reps/rep-0103.html

——–————

[9] Robot Operating System (n.d.). Retrieved October

25, 2015, from wiki.ros.org/geometry/Coordinate

FrameConventions

[10] van Oosten, J. (2012). Understanding Quaternions.

3D Game Engine Programming.

[11] Robot Operating System (n.d.). Retrieved October

25, 2015, from http://wiki.ros.org/urdf/Tutorials

[12] Robot Operating System (n.d.). Retrieved October

25, 2015, from wiki.ros.org/urdfoveit.ros.org/urdf

[13] Robot Operating System (n.d.). Retrieved October

25, 2015, from wiki.ros.org/urdf/XML/link

[14] Robot Operating System (n.d.). Retrieved October

25, 2015, from wiki.ros.org/urdf/XML/joint

[15] Robot Operating System (n.d.). Retrieved October

25, 2015, from en.wikipedia.org/wiki/XML

[16] Spong, M. W., Hutchinson, S., & Vidyasagar, M.

(2004). Robot Dynamics and Control. Second Edi-

tion, Chapter 3 Forward Kinematics: The Denavit-

Hartenberg Convention. Wiley.

[17] Thomas, F. (2012). Solved Problems in Robot Kine-

matics Using the Robotic Toolbox. Universitat

Politecnica DE Catalunya Barcelona Tech. Barcelo-

na, Spain.

[18] Corke, P. (2013). Robotics, Vision and Control. Edi-

tion 1, Section 8.1.4 Jacobian and Manipulability.

Springer.

[19] Tsai, T. (1986). Workspace Geometric Characteriza-

tion and Manipulability of Industrial Robots. PhD

thesis, the Graduate School of Ohio State University.

[20] Vahrenkamp, N., Asfour, T., Metta, G., Sandini, G.,

& Dillmann, R. (2012). Manipulability Analysis.

Proceedings of IEEE-RAS International Conference

on Humanoid Robots (Humanoids). Osaka, Japan.

[21] Robot Operating System (n.d.). Retrieved Oct 25,

2015, from http://moveit.ros.org/documentation /

tutorials/

[22] Sucan, I. A., Moll, M. & Kavraki, L. E. (2012). The

Open Motion Planning Library. IEEE Robotics and

Automation Magazine.

[23] Prats, M, Sucan, I., & Chitta, S. (n.d.). Workspace

Analysis. (n.d.). Retrieved October 25, 2015, from

http://moveit.ros.org/assets/pdfs/2013/

icra2013tutorial/ICRATutorial-MoveIt.pdf

[24] Chitta, S., & Sucan, I. (2013). MoveIt. ROS Devel-

oper Conference. Stuttgart, Germany.

[25] Corke, P. (2014). Robotic Toolbox for Matlab. Re-

lease 9. Retrieved October 25, 2015, from http://

www.petercorke.com/robot

[26] Brazen Head Automation (n.d.). Retrieved October

25, 2015, from http://www.brazenbot.com

Biographies

ASAD YOUSUF is a professor at Savannah State Uni-

versity. He earned his B.S. degree from N.E.D University,

M.S. degree from the University of Cincinnati, and doctoral

degree from the University of Georgia. Dr. Yousuf is a reg-

istered professional engineer in the state of Georgia. He is

also a Microsoft Certified Systems Engineer. Dr. Yousuf

may be reached at yousufa@savannahstate.edu

WILLIAM LEHMAN is president of Bill’s Robotic

Solutions, which he started in 2013. He has over 20 years of

experience in software and hardware development. He has

worked on numerous projects in digital communication sys-

tems, robotics, and aerospace applications. Mr. Lehman

received his B.S. degree in Electrical Engineering from the

Catholic University of America. Mr. Lehman may be

reached at tec.teacher.lehman@gmail.com

MIR HAYDER is an assistant professor in the Depar t-

ment of Engineering Technology at Savannah State Univer-

sity. He received his Ph.D. in mechanical engineering from

McGill University. His research interests include robotics,

fluid-structure interaction, syngas and blended fuel combus-

tion, and flow and structural simulations. Dr. Hayder may

be reached at hayderm@savannahstate.edu

MOHAMAD MUSTAFA is a professor of civil engi-

neering technology at Savannah State University. He had

six years’ of industrial experience prior to teaching at SSU.

He received his B.S., M.S., and Ph.D. degrees in civil engi-

neering from Wayne State University. His research interests

include sensors applications in civil engineering. Dr. Musta-

fa may be reached at mustafam@savannahstate.edu

——–————

INTRODUCING KINEMATICS INTO ROBOTIC OPERATING SYSTEMS 47

mailto:yousufa@savannahstate.edu
mailto:tec.teacher.lehman@gmail.com
mailto:hayderm@savannahstate.edu
mailto:mustafam@savannahstate.edu

